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A formalism developed for the treatment of chainlike models of reaction 
dynamics is applied to simple reacting systems and generalized to treat a 
reaction with a branching process. The models can be solved exactly, and the 
overall rates of the reactions are studied as a function of the rates arising from 
different dynamical regimes involved in the microscopic mechanisms. 
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1. I N T R O D U C T I O N  

Even for a superficial ly s imple reac t ion  like an i somer iza t ion  between A 
and  B species, the reac t ion  dynamics  often involves several  different k inds  
of  molecu la r  mot ion ;  for example ,  the in te rconvers ion  process  may  entai l  
passage  over  a po ten t ia l  bar r ie r  and  re laxa t ion  of  a newly- formed species 
to its g round- s t a t e  form. In the descr ip t ion  of  such processes it is 
convenien t  to focus on the dynamics  of the system a long  a reac t ion  
coord ina te ;  the behav io r  of  this react ive degree of  f reedom m a y  be complex  
due to its coupl ing  to o the r  degrees of  f reedom, like in terna l  molecu la r  or  
solvent  mot ions .  Except  in the case of mode l  systems where molecu la r  
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dynamics computer simulations are possible, the precise nature of the 
influence of bath degrees of freedom on the reaction coordinate is not 
known; hence, it is useful to model the dynamics by a stochastic process, 
which ignores many of the details of the bath motion and concentrates 
instead on its statistical properties. 

In this paper we study a number of stochastic models of barrier- 
crossing dynamics as an application of the general formalism developed in 
the preceding paper, hereafter referred to as I. (1) All of the reactions can be 
imagined as occurring between species defined by potential wells separated 
by barriers in a reaction coordinate. Both the activation and deactivation 
mechanism in the well regions as well as the dynamics on the barrier are 
assumed to be simple stochastic processes: activation and deactivation 
within the wells occurs by "collisions" with exponentially-distributed colli- 
sion times, while the barrier dynamics is a random telegraph process 5 
where the velocity changes sign with exponentially-distributed waiting 
times. While these stochastic processes are highly idealized and may not 
capture all features of real reaction rates, they have the advantage that they 
are exactly soluble and show how various regimes of different dynamical 
behavior couple and contribute to the overall rate of a reaction. 

Three models are studied below: the first two are chainlike in 
character and the formalism of I can be applied directly; the results for 
these models are presented in Sections 2 and 3. The third model involves 
a branching process among three species and requires a generalization of 
the method; this calculation is presented in Section 4. 

2. CROSSING OF A S IMPLE BARRIER 

2.1. Model  and Dynamics 

As a first illustration of the general formalism presented in I, we 
calculate the rate coefficient for the interconversion between two species A 
and B separated by a flat barrier of length L. The time evolution of the 
model is simple and can be described by the motion of a "particle" 
representing the dynamics of the reaction coordinate subject to the 
following collision processes resulting from its coupling to the other degrees 
of freedom of the system: When the particle is in the barrier region [0, L],  
it has speed _ v, where the sign changes at stochastic times exponentially 
distributed with frequency Z;  this is a random telegraph process. When the 
particle arrives in 0 it has speed - v ,  and there is a time rA such that if 

5 See Kac (2) (based on 1956 notes from the Magnolia Petroleum Company colloquium 
lectures). 



Stochastic Theory of Chemical Reaction Rates. II 897 

there is no collision (with collision frequency Z A)  in the time interval 
[0, L4], the particle is reflected and stays in 0 with the reverse speed +v. 
On the other hand, if there is a collision in [0, rA], the particle stays in 
state A forever (absorbing state). When the particle is in 0 with speed +v 
i( begins its random telegraph process in the barrier region. If the particle 
arrives in L with speed + v, the mechanism is the analog of that in A, with 
a time ZB and collision frequency ZB. 

A schematic representation of this model as a double-well potential 
problem is shown in Fig. 1; its full dynamics was studied earlier, (3) but we 
show here that the general formalism of I provides a simple and direct 
route to the rate constant, and we give a physical interpretation of the 
overall rate constant in terms of partial rate constants for the various 
dynamical regions. 

We can interpret this model in the framework of the general chainlike 
models in the following way: The regime X o contains three states, 
X o = {A- ,  0 +, 0 - } ,  where A -  is identified with the stable A species, which 
is taken to be an absorbing state. In the case of a reactivation mechanism 
from the "bottom of the well," a fourth state A + could be added to X o. 
Similarly, the regime X2 contains three states, X2 = {L +, L - ,  B + }, where 
B + is the stable (absorbing) B species. Again, B -  could be added if there 
is a reactivation process in B. The regime X1 = [0, L ]  x { 1 , -  1} is the 
phase space of the barrier region [0, L ]  with two possible speeds. 

2.2.  T h e  O v e r a l l  R a t e  C o n s t a n t  k 

We can use Eqs. (I.3.8) and (I.3.9) directly to compute the rate 
constant k characterizing the interconversion process. Taking the dividing 
surface at 0, we can calculate k = koB by letting 0 = A, i = 0, n = i + 1 = L, 
and n + 1 = B in these formulas, and obtain 

1 1 1 1 

- =  cr/+~oL + ar k koA kLB 
(2.1) 

1 1 1 
k o L -- lr ~-S-- f + - ' ~  

' ~ O L  ' ~ O L  

and 

where S~ is the transmission coefficient defined in I and we have taken 

qo = qL. 
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It is not difficult to compute the required transmission coefficients. By 
definition, SoA is the probability that the particle starting from 0 -  at time 
t - - 0  is absorbed by A at some time; this is exactly the probability to 
have a collision in the time interval [0, TA]. For  exponentially distributed 
collisions with frequency ZA, the probability to have no collision in [0, zA] 
is exp(--ZA'cA), SO that 

SOA = 1 -- exp(- -ZArn)  (2.3) 

By a similar argument we have 

SrB = 1 - exp( - ZBz~) (2.4) 

It is interesting to note that we can use the general formalism of 
Part I, even to compute SoL. We divide the barrier region [0, L ]  into a 
sequence of small segments 

[0, L ]  --- [0, AX] w lAX, 2 AX] w ... w [(n - 1) AX, n AX] 

with n AX= L. Inside each segment [ j  AX, ( j+  1)AX] the particle starting 
from j AX  with speed + v is transmitted to ( j  + 1 )AX if no collision occurs 
during the time (AX)/v, and reflected back to j AX if there is one collision. 
Neglecting (AX) 2 terms, we get 

SjAX, ( j +  1) A X  = 1 - z A X =  S( j+ I)AX, jA X 
lY 

This implies that in the barrier q~= qj+l and by Eq. (I.2.12) 

1 1 = 1 (2 .5)  
SOL j = 0  AX,(j+I)AX 1 - Z A X v  -1 

so that 

( SoL= 1 + (2.6) 

Of course, there are other, more standard ways,to obtain (2.6), using well- 
known information on the random telegraph process (see, for instance, 
ref. 2). 

Using these expressions for the transmission coefficients S~j, we can 
write Eqs. (2.1) and (2.2) for k in a physically transparent form. First, we 
can identify Z.TSa" '~0L as the transition state theory (TST) rate constant for 
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crossing the barrier and thus the TST rate constant k TsT for the overall 
reaction: 

k T S T =  I~7ST qOV (2.7) 
'~0L ~ - -  

qA 

The partition function ratio qo/qA is just 

qo/q~ = e - ~EA/W A (2.8) 

where E A is the activation energy from the A well bottom; the factor V'cA 

arises from the fact that 0 is a point while the A well has a finite length VrA 

(cf. Fig. 1 and the final remark in Section 1.3.1). Thus, the TST rate 
constant is 

1 E k rsT = - -  e a A (2.9) 
?A 

In this simple model, r21 also represents an attempt frequency at the 
barrier. The effective rate constant k;~A in Eq. (2.1) can be interpreted as an 
activation rate constant for well A: 

kw, =ke r r0A=Zvq~  e ~eA( 1 - e  A ----e-Z'4~A (2.10) 

A / 0 L B / 

A 

B 

Fig. 1. Schematic representation of a simple barrier-crossing model involving interconver- 
sion of A and B species connected by a barrier of length L. The states A' and B' represent 
excited states in each well; when the system is in these states it may return to the barrier 
region or be deactivated and form stable A or B species. 
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A deactivation rate constant from energies at the level of 0 can be defined 
from the detailed balance relation 

k d e a c t _ _ l r a c t  ~1eq . . . .  t ~ q ~ )  
/ _ _ \  

W,A --I~W, AI~'A ~ A - - k w . A  TJA 

1 (1-e z~A~ 
- \ j (2.11) 

[The factor of ZA appearing in the first line of Eq. (2.11) accounts for the 
finite length of the A well at its top.] A similar set of the rate constants can 
be defined for well B with the replacement of A by B in Eqs. (2.10) and 
(2.11) and are related to the term involving S/m in Eq. (2.2). 

Finally, the effective rate constant k ~  for the barrier involving SOL is 
a rate constant for diffusive motion in the barrier region, defined as 

1 
/(barr ke ff = vqo { 1 _ _  1 = ATST V 
'~D = OL qA \SoL Z L  

= kWST D 
vL 

(2.12) 

where the identification of the diffusion coefficient D is made from a 
consideration (2) of the random telegraph equations in the diffusion limit 
where v-~ 0% Z ~  ~ ,  and D = v 2 / Z  is fixed. Recall that Kramers' 
formula (4) for the rate constant k xR for barrier crossing dynamics in the 
strong friction or diffusive limit has the form kKR= kTSTwbm/~, where Wb is 
the barrier frequency and ~ the friction coefficient. Equation (2.12) is just 
of this form if we relate the diffusion coefficient to the friction coefficient by 
the Einstein relation (4) D - - k s T / ~  and identify k s  T/mvL with the barrier 
frequency. 

In terms of the partial rate constants just described, we can write k in 
the form 

1 1 1 1 1 
- =  a~t + +,~-g-~+ (2.13) 
k k w, A Y ~D ~ e q  /~act ~BA '~ W,B 

where K ]  q is the A ~ B equilibrium constant qs/qA. 

2.3. Discussion of k 

Equation (2.13), which has the general form originally derived via SSP 
theory (5'6) and applied to isomerization �9 (6) reactxons, expresses the additivity 
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of the reciprocal rate coefficients characterizing the various regimes. First, 
ac t  kw,  A, Eq. (2.10), governs the activation from the reactant A up to the 

barrier. Next, 
1 1 1 

k b a r  r k Y S Y  ~- /e.bar r (2.14) 

governs the motion in the barrier region. If this is very slow, then 
k b a r  r L b a r r  --'1"/r D " 

Finally, t,'~q ~,r governs the rate of the stabilization to form B after " ~ B A  "~ W, B 

the barrier passage. It is perhaps most natural to consider this a deactiva- 
tion step. In terms of the deactivation rate constant 

one has 

kdeac = (1 -- e-zB~B)/'roe--ZB~B 
W , B  

qa Vqo (1 -- e--ZB~B) 
K e q  ~-act  

BA "~ W , B  - -  
q A  q D  ~ B  e - Z B ~ : B  

I T S T  l d e a c t  
=K ~tcw, 8 (2.15) 

This is most readily interpreted by considering Eq. (2.13) when activation 
out of A and diffusion across the barrier are fast and deactivation in B is 
very slow. Then we have 

1 i 
- -  - '~  . T S T  k d e a c t  (2.16) 
k K "rBKw, B 

or k---TST --deact Then the k TsT factor describes the rate constant for - - K  " C B K w ,  B . 

arriving over the B well (containing the activation energy factor e -~E~) and 
the factor 

1 - e -  ZB~B 
- -  deac t  __ (2.17) 

T B K  W , B  e --ZB'CB 

gives the probability of deactivation. 
Under ordinary circumstances, the well activation and deactivation 

contributions will only be of importance when these steps are slow, e.g., at 
low to moderate density; otherwise the barrier passage is rate limiting 

ac t  ~.,- eq  ] . .ac t  and kw, A and "'SA'~W,8 drop out of k. At such densities, the collision 
frequencies will be low enough that Z~rA and ZB~ B are both much less 
than unity. Then we have, for example, 

a c t  {l_--e-Z~'~e-~e~__.Z,4e-ae~ (2.18) 
k w ' A = \  rAe z ~  j 
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which is the standard form of a "strong-collision" activation rate 
constant. (5'7'8) For a symmetric isomerization (EA = EB, ZA = ZB, etc.), use 
of this in Eq. (2.13) gives 

1 2 1 1 
- =  + + ~  (2.19) 
k k ~  

act __ where ksc-Ze-~eA..This expression (9'1~ has recently been found to fairly 
accurately describe the rate of a model isomerization in a BGK stochastic 
computer simulation. (a~ 

3. C R O S S I N G  OF A BARRIER W I T H  SEVERAL C H A N N E L S  

It is not difficult to extend the simple barrier-crossing model of 
Section 2 to allow for the possibility that there are several channels 
connecting the A and B states. This could, for example, serve to model 
certain structural effects in an isomerization, in which barrier passage 
occurs with different internal configurations of the isomerizing species. 
Other examples can be imagined in which the reacting species encounters 
different medium (e.g., solvent) configurations on the way to products. 

We suppose that there are r channel states having common extremities 
0 and L but possibly of different length. When the particle starts at 0 with 
speed + v, it chooses channel j with probability pj, while if it starts from 
L with speed - v  it chooses channel j with probability pj; subsequent to 
the choice it begins a random telegraph motion in the j th  channel. If a 
particle in channel j arrives at 0 with speed -v ,  it goes into regime Xo, 
where it may be deactivated or return to 0 § where the same mechanism 
as in Section 2 operates. This reaction model is depicted symbolically in 
Fig. 2. We take qo = qL" 

The definitions of the regimes Xo and X2 are unchanged from 
Section 2, and the regime X1 will be described in terms of the four states 
XI=  { 0 + , 0 - , L  § L-} .  The formal expression for the rate constant is 
identical to that Eq. (2.2); however, SoL is different from Eq. (2.6). SoL is 
the probability that the particle is absorbed by L +, knowing that it started 
from 0 § (with speed +v). But, starting from 0 § the probability of 
choosing channel j is pj and in channel j there is a probability ~(J) (Lj is ~ 0 , L  

the length of channel j)  to be absorbed at the other end of the channel. 
Trajectories coming back to 0-  are not counted, since this is an absorbing 
state for X~. Then, we have 

SOL = ~ n s(J~ (3.1) r j  0 ,Lj  
j = l  
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0 L 
t 

A / ~ ..... B I 

Fig. 2. 

A 

B 
Model with r barrier channels connecting wells A and B. 

and in the same way 

SLO: ~, nt .~(J)  l~j ~0, Lj 
j = l  

We may then write k = koB as 

(3.2) 

where 

1 1 1 1 l 
(3.3) -- ~ act -~- k kw, A kTS---~ -t- ~7 ;ar----~ q - /~  }~/~ ~ B - -  ~ " P '  

, 1) 
gbarr  qo v 

(3.4) 

Thus, the only difference between Eq. (3.3) and (2.13) is the replacement of 
T barr that takes into account "~oz~barr by a new diffusive barrier rate constant ,~D 

Tbarr averaging over the possible channels. The new rate constant ,~o can be 
shown to have a simple additive form. With Eqs. (3.4), (3.2), and the 
analogue 

SO, Lj = 1 + (3.5) 

of Eq. (2.6), we find that 

~ b  . . . .  k TST ~ ~jD/vLj (3 .6 )  D - -  
j = l  
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where D s = I.)2/Zj is the diffusion constant in channel j and 

pj(1 + Dj/vQ) ' 

= Zs Ps( 1 + Ds/vLj) -~ (3.7) 

is an effective probability for channel j. Equation (3.6) has the property 
that if diffusion in a particular channel i is much faster than in the others, 
it will dominate the rate, i.e., r.barr __. kTST(DJvLi). This reflects the fact that 

' ~ D  

the channels j are parallel routes across the barrier. 

4. MODEL WITH TWO CHANNELS AND THREE WELLS 

While the formalism in I is restricted to chainlike models, it is 
nonetheless possible to use similar ideas to treat a broader class of 
problems. Branching processes frequently arise in the study of reaction 
mechanisms, and it is of interest to study microscopic models that incor- 
porate such a feature. (t1'12) As an example, we compute the rate constant 
for a system of three species denoted S, A, and B, which are coupled by 
two barriers: S and A are connected by the barrier [0, LA], S and B are 
connected by the barrier [0, L~], while A and B are not directly coupled 
to each other; they are coupled only through S. The schematic picture is 
given in Fig. 3. 

The dynamical evolution is as follows: the deactivation mechanism in 
the wells is exactly the same as in the other models, with (ZA, rA), 
(Ze, zB), and (Zs, rs) the collision frequencies and characteristic times for 
each well. When the particle arrives at 0 § (with speed +v) it chooses 
barrier [0, LA] with probability PA and barrier [0, LB] with probability 
P8 and once it has chosen a barrier it begins a random telegraph process 
with collision frequency Z A or Z8 in the barrier region. It can then arrive, 
say, at L~ and become deactivated or come back in L j .  If it arrives in 0 - ,  
it can become deactivated and fall in S or come back to 0 +. 

The model is not chainlike, because there is a bifurcation point at 0; 
in fact, the point 0 + has to be split into two points 0~ + and 0~,  which are 
phase points corresponding to the particle with speed + v at the beginning 
of the barrier leading from 0 to A or 0 to B, respectively. There are five 
dynamical regimes in this model: Xe = {S- ,  S +, 0 - ,  0 J ,  0~ }, where S -  is 
identified with the bottom of well S; XA= {A +, A- ,  L~-, L j }  and 
X e = { B  +, B-,  L~, L~}, where A + and B + are identified with the 
bottoms of wells A and B, respectively; and X0A = [0, LA] x { +v, --v} and 
X0~= [0, Ln] x { + v , - v } ,  the phase space regions corresponding to the 
two barriers. In the above specification we have made the identification 
0,~ = 0 ~  = 0 - .  
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( a )  A / 

S / 

S 

_oA 

B 

A 

(b) 

_o-- oi,-- 
S- 

C 
4- 

LA 

Fig. 3. (a) Schematic picture of the branching model involving two barriers and three wells. 
(b) Representation in terms of the states of the stochastic model. 

4.1. Rate Constant  Calculat ion 

Consider a regime X,  and define Sn(kll) to be the transmission 
coefficient or probability to be absorbed by k at some time, starting from 
l, and staying inside X,.  For  region Xo, with absorbing states 0~-, 0 + , and 
S - ,  we may define the transmission coefficients S o ( S - ] 0 - ) ,  So(0 + [0 - ) ,  
and So(0~ 10-).  It is clear that 

S0(0 + 10- ) = pA(1 -- So(S- 10- )) (4.1) 

and 

S0(0~ 10- ) = pB(1 - So(S- 10- )) (4.2) 
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Next, we define a regime Xt to be a union of the other regimes, Xt = XA U 
XB U Xoa w X08. This regime has absorbing states 0- ,  A +, and B +, and we 
define the transmission coefficients SI(A+IO~), SI(B+I0+), and 
$1(0 l0 +), and an analogous set of quantities with A ~ B and B ~ A. 
Note that SI(B+ [0~)= 0, since the barrier [0, LA] c a n n o t  communicate 
with [0, Le] inside X~, except through 0- ,  which is absorbing for X~; 
thus, 1-S~(A + l0 + ) =  S~(0- l0 +). 

Let P(A +, ~ I l) be the probability to be absorbed by A + at some 
time, starting from I=0J-,  0/~, or 0 , the evolution taking place in the 
whole system X o ~ X~. The flux of particles absorbed at A +, measured at 
0, may be written in terms of these probabilities as 

q~(O,A)=v[pAP(A+,~IO +)+p,~P(A+, ~ I O ~ ) - P ( A + , ~ I O - ) ]  (4.3) 

This flux definition is the analog of that introduced for the chainlike 
models. The rate constant k A = koA for the production of A from reactant 
S can be expressed in terms of this flux as 

kA = qo ~b(O, A) (4.4) 
qs 

An analogous expression can be written for the rate constant characterizing 
the production of B. 

Next, we outline the calculation of ~(0, A). We may write 

P(A+,oo lO3)=Sa(A+[O+)+P(A+,~IO-)SI (O- IO~)  (4.5) 

P(A +, aolO~)=P(A +, o~10-) SL(0 10/~) (4.6) 

P(A +, ~ IO- )= P(A +, ~ l0 +) So(O + I0-)  

+ P(A +, oo I O + ) So(O[~ 10- ) (4.7) 

These equations follow directly from the definitions of the quantities; for 
example, to establish Eq. (4.5), we can say that the probability to go from 
0+ to A § splits into the probability to go from 0J- to A § without leaving 
XI(SI(A +10+)), and the probability to go from 0 3 to A § when the 
particle leaves X1 and enters X o (X 0 is entered through state 0-). 
Equations (4.5)-(4.7) may be manipulated to yield 

P(A +, ~ 10-)=  [paP(A + , ~ 10+)+pBP(A +, ~ 10+)][1 - S o ( S - [ 0 - ) ]  

(4.8) 
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and 

[pAP(A  + , ~ IO+ )+  p s P ( A  +, ~ 10+)] -1 

= [ p A S I ( A + ] O j - ) ] - '  {1-- [ 1 - S o ( S - I  0 - ) ]  

x rpAs,(0- I 0~) + p~S l (O- lO . ; ) ]  } (4.9) 

Substitution of Eqs. (4.8) and (4.9) into (4.3) yields 

1 q,  1 

ka qo qs(0, A) 

__q~(.  1 ) 1 q, 1 
qov\So(S_tO_ ) 1 +paqovSl(A+lO_~) 

+p__~q__2_~ 1 ( 1  ) 
So(S-- 1 Sa(B+ I Pa qov SI(A +]0~) [ 0 - )  

o +)  (4.1o) 

where we have used the fact that 1-SI(B+fO~)=SI(O-[O~) and 
Pa + PB = 1. 

The transmission coefficients may be expressed in terms of the rate 
coefficients defined in Section 2. The activation rate constant for well S is 
given by 

ao, 10--) kw. s Vqo (S-- 1 (4,11) 

SI(A + [0 +) is also simply related to the rate constants introduced earlier 
by 

vqoSl(A +t0))  vqo A vqo vqo .a 

1 1 ~q 
- -  /e -barr ~- ~ "q- Kso 1 - ~eq Va;t- (4.12) 

"~ D , A  ~ A S  t~ W , A  

where Kw = qs/qo and K]~ = qa/qs" There is an analogous expression for 
SI(B + [0+), which has the form of Eq. (4.12) with A replaced by B. Using 
these results, we may write k ]  1 as 

I l 1 1 P s  k'~ 1 
- - , c t  + - -  - 7 -  -~ , a c ,  ( 4 . 1 3 )  

kA kw, s Pa ka PA kA kw.s 
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where 

1 1 1 Kw q 1 
~- .;-+-~ + r,. e~ ~ac~ . ~ ~ ~ = A ,  B (4.14) 

The k'~ are the rate constants for independent production of either A or B 
subsequent to activation out of the reactant well. We may write Eq. (4.13) 
a s  

p ak 'A 

k ~  1 + ( p A k ' A  + p B k ~ ) / k w ,  s 
= , ,ct (4.15) 

This expression clearly shows the influence of the B channel on the rate 
constant for the passage from O to A. In the absence of the second channel, 
p B = 0  and p a =  1, and the results is identical to Eq. (2.13) for a single- 
channel reaction; however, the presence of channel B influences the 
dynamics, since particles can explore this channel before being absorbed by 
A; this leads to a reduction of the rate constant for the S ~  A reaction. 
Finally, the generalization of Eq. (4.15) to any number of products is 
obvious. 

5. C O N C L U S I O N  

The calculations presented in this paper demonstrate how the overall 
rate of a reaction depends on the rates of passage through intermediate 
regimes on the way from reactants to products. The simplicity of the 
assumed stochastic model, along with the general formalism developed in 
I, permit a detailed investigation of this connection between the 
microscopic dynamics and the macroscopic rate law. The calculations also 
show that a variety of processes, including branching mechanisms and 
interactions among several channels, can be treated by this formalism. 

For the chainlike models the explicit calculations of the stochastic 
process yield a simple addition formula for the reciprocals of the rate 
constants; this is a direct consequence of the formalism developed in I. The 
calculations of the rate constant for the branching process show that this 
simple type of law can break down when nonconsecutive steps are intro- 
duced in the microscopic mechanism. Nonetheless, related addition 
formulas can be found. 

The random telegraph process used in these calculations is a 
simplification of the stochastic dynamics of a reaction coordinate of a real 
system; however, its simplicity allows a direct calculation of the rate 



Stochastic Theory of Chemical Reaction R a t e s .  II 909 

constants for the various regimes, and the physical content of the theory 
can be illustrated without lengthy calculations. The stochastic processes 
that occur in the different regimes depend on the specific system under 
study. The main advantage of the formalism presented here is that the 
possibly complex stochastic motion in the full system can be analyzed in 
terms of processes occurring in dynamically distinct regimes; the explicit 
calculations presented here demonstrate this point. 

It is worth noting that there is another class of rate processes where 
the methods developed in these papers could be applied. These are noise- 
induced transitions between macroscopic bistable states in far-from- 
equilibrium chemical systemsJ TM The evolution equations are stochastic 
versions of the macroscopic rate laws. These transitions may involve 
barrier-crossing dynamics, and dynamically distinct regimes may be iden- 
tified. If the transition rate is driven by externally applied noise, then the 
choice of stochastic dynamics can be controlled by the investigator and it 
is possible to implement a Poisson-dichotomous noise process like that 
considered in these model calculations. Thus, while our calculations have 
largely heuristic value for the study of microscopic reaction kinetics, they 
may be of direct value for other types of rate process. 
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